

SCHOOL OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING ACADEMIC YEAR: 2019-20

YEAR: II

SEMESTER: I

REGULATION: R18

Course Name: Surveying & Geomatics

Course Code: CE301PC

CO1	Able to Summarize the types of surveying and their measuring techniques of determining the	
	distances and directions	
CO2	Able to Survey for the construction of road, canals and contours by using different types of	
	leveling techniques	
CO3	Able to evaluate the areas and volumes using different methods	
CO4	Able to extend the knowledge of theodolite in tacheometric surveying and curve setting and	
	understand the advanced surveying like Geodetic surveying, Total Station, GPS and GIS	
CO5	Able to explain the concept of Photogrammetry Surveying	

Course Name: Engineering Geology

CO1	Able to Explain the difference between physical and mechanical weathering.	
CO2	Able to determine the compressive strength of rock granite and other rocks	
CO3	Able to evaluate the various types of geo physical methods, geological formations, structures, textures.	
CO4	Able to distinguish dykes and sills, folds, faults, weathering and erosion and igneous, sedimentary and metamorphic rocks.	
CO5	Able to list out and classify the various types of dams, reservoirs and tunnels.	

Course Name: Strength of Materials-I

Course Code: CE303PC

Course Code: CE302PC

CO1	Able to determine the stresses and strains in the members subjected to axial and bending	
CO1	loads.	
	Able to construct the Shear Force and Bending Moment diagrams for different beams	
CO2	subjected to various loads.	
CO3	Able to determine the shear stresses and flexural stresses in structural members.	
CO4	Able to determine the principal stresses and strains in structural members	
CO5	Able to evaluate the slope and deflection of beams subjected to various loads	

Course Name: Probability & Statistics

Course Code: MA304BS

CO1	Able to Analyze random variables involved in the probability models and apply them for
CO1	various branches of engineering
CO1	Able to Understand the basic ideas of probability and random variables and various discrete
CO2	probability distributions and their properties.
CON	Able to Understand the basic ideas of probability and random variables and various
CO3	Continuous probability distributions and their properties.
CO4	Able to Understand the basic ideas of statistics including measures of central tendency,
CO4	correlation and regression.
	Able to calculate mean and proportion (small and large sample) and to make important
CO5	decisions from few samples which are taken out of unimaginably huge populations which is
	useful for non circuit branches of engineering.

Course Name: Fluid Mechanics

CO1	Able to Understand the properties of Fluid Mechanics and apply them for Fluid Statics.
CO2	Able to Classify the fluid flows and use momentum principles in Fluid Dynamics.
CO3	Able to Apply the Bernoulli's equation practically and also Understand the flow over Notches
	and Weirs
CO4	Able to Understand the concept of flow through pipes and Analyze the pipe Network

Able to **Apply** boundary layer theory Concepts for Laminar and Turbulent flows. **CO5**

Course Name: Surveying Lab

CO1	Able to Apply the principle of surveying for civil engineering applications.
CO2	Able to Calculate areas using chain and compass survey, plane table and plot them.
CO3	Able to evaluate the levels of grounds using theodolite and perform trigonometrical leveling
CO4	Able to understand the usage of Total station and determine various parameters.

Course Name: Strength of Materials Lab

CO1	Able to Determine hardness of metals.
CO2	Able to Classify the materials like steel, concrete, etc. depending upon the strength.
CO3	Able to Find out the compression strength of spring, wood and concrete
CO4	Able to Determine the Elastic Constants of steel by conducting flexural and torsion tests
CO5	Able to Find out the Tensile strength of Materials like steel, etc. by Tension test

Course Name: Engineering Geology Lab

	8 8 8 8 8 8	
CO1	Able to Understand the properties of Rocks	
CO2	Able to Understand the properties of minerals	
CO3	Able to Measure the strike and dip of the bedding planes.	
CO4	Able to Interpret the geological maps	
CO5	Able to Solve the geological problems.	

Course Code: CE306PC

Course Code: CE307PC

Course Code: CE305PC

Course Code: CE308PC

YEAR: II

SEMESTER: II

Course Code: EE401ES

REGULATION: R18

Course	Course Name: BEEECourse Code: EE401ES	
CO1	Able to Recall fundamentals of electrical circuits and outline measuring instruments	
CO2	Able to Discuss DC generators and types of DC motors	
CO3	Able to Explain the working of transformers and AC machines	
CO4	Able to Analyze characteristics of diodes rectifiers and transistors	
CO5	Able to Explain construction of cathode ray oscilloscope	

Course Name: BMECE

Course Code: CE402PC

CO1	Able to Distinguish between various engineering materials and understand their applications	
CO2	Able to Compare and select various power transmission elements and understand their usage in	
	civil engineering equipment	
CO3	Able to Explain the various principles of Thermal engineering and their applications	
CO4	Able to classify various manufacturing processes and choose suitable process for civil engineering	
	applications	
CO5	Able to Differentiate between various machine tools and select appropriate machine tool based on	
	the requirement.	

Course Name: BMCP

Course Code: CE403PC

CO1	Able to understand the types of building stones and bricks and their composition and
	characteristics.
CO2	Able to discuss the manufacturing process of timber, aluminum, glass, paints, plastics, cement,
	different tests on cement and various types of admixtures.
CO3	Able to explain building components like lintels, arches, walls, vaults, stair cases, floors and
	building services of plumbing, sanitary, ventilation, etc.,
CO4	Able to discuss about mortars, masonry, finishes and formwork.
CO5	Able to understand about building planning and bye-laws.

Course Name: SoM-II

Course Code: CE404PC

CO1	Able to explain the theory of torsion and springs.
CO2	Able to understand the concept of columns and struts.
CO3	Able to understand the concept of direct and bending stresses.
CO4	Able to Summarize about unsymmetrical bending moment and beams used in the plan.
CO5	Able to distinguish between thin Cylinders and thick Cylinders.

Course Name: HHM

Course Code: CE405PC

CO1	Able to Compare the types of open channel flows and most economical sections	
CO2	Able to Extend the knowledge on non-uniform flow and dynamic equation for Gradually Varied	
	Flow	
CO3	Able to Interpret about dimensional analysis, similitude, hydraulic models and numbers	
CO4	Able to Distinguish between different types of hydrodynamic forces on jets	
CO5	Able to Summarize the different types of turbines and pumps and study their properties in	
	hydropower plant.	

Course Name: SA-I **Course Code: CE406PC** Able to **Solve** the forces in members for prefect frames **CO1** Able to calculate the deflections of beams using energy theorems and analyze the three hinged **CO2** arches Analyze the propped cantilevers and fixed beams. **CO3** Able to Analyze continuous beams by clapeyron's three moment theorem and analyze beams, and **CO4** portal frames using Slope deflection method Able to **Sketch** influence line diagrams for the moving loads. **CO5**

Course	Name:	CADCED	Lab

Course	Name:	CADCED	Lab

Course	Name:	CADCED	Lab

CO1	Able to explain and use the Autocad commands for drawing 2D & 3D building drawings required
	for different civil engineering applications.
CO2	Able to Plan and construct the Civil Engineering Buildings as per aspect and orientation
CO3	Able to present drawings as per user requirements and preparation of technical report

Course Name: BEEE LAB

Course Code: EE409ES Able to **analyze** and **solve** electrical circuits using network laws and theorems. **CO1 CO2** Able to understand and analyze basic Electric and Magnetic circuits Able to **study** the working principles of Electrical Machines **CO3** Able to **understand** components of Low Voltage Electrical Installations **CO4 CO5** Able to **identify** and characterize diodes and various types of transistors.

Course Name HHM I ah

Course Code: CE400PC

Course Code: CE407PC

Course	Name: HHM Lab Course Code: CE409PC
CO1	Able to Describe the basic measurement techniques of fluid mechanics and its appropriate
	application.
CO2	Able to Interpret the results obtained in the laboratory for various experiments
CO3	Able to Discover the practical working of Hydraulic machines- different types of Turbines,
	Pumps, and other miscellaneous hydraulics machines
CO4	Able to Compare the results of analytical models introduced in lecture to the actual behavior of
	real fluid flows and draw correct and sustainable conclusions

YEAR: III

SEMESTER: I

REGULATION: R16

Course	Name: Concrete TechnologyCourse Code: CE501PC
CO1	Able to compare the types of cement, admixtures and aggregates and can identify their usage.
CO2	Able to explain workability of fresh concrete and tests conducted to determine it.
CO3	Able to understand the concept of the hardened concrete.
CO4	Able to design mix proportions for different grades of concretes using different methods
CO5	Able to understand the properties of various special concretes

Course Name: DRCS

CO1	Able to Design RC Structural elements
CO2	Able to Design the Reinforced Concrete beams using limit state
CO3	Able to Design Reinforced Concrete slabs
CO4	Able to Design the Reinforced Concrete Columns and footings Design structures for serviceability
CO5	Able to Design staircases and canopy

Course Name: WRE

Course	Name: WRE Course Code: CE503PC
CO1	Able to explain about hydrological cycle, types of formation of precipitation, rain gauges, and
	runoff
CO2	Able to define hydrograph analysis, limitations and applications. S-hydrograph, synthetic unit
	hydrograph
CO3	Able to examine the ground water occurrence, porosity, specific yield, permeability, transmissivity
	and storage coefficient
CO4	Able to understand the necessity and importance of irrigation, advantages and its effects
CO5	Able to classify the canals and design by Kennedy's and lacey's theories

Course Name: FoM

Course Code: SM504MS Able to **Understand** the significance of management in their profession **CO1** CO₂ Able to **Define** and **summarize** the importance of planning and decision making techniques Able to **Describe** the organizational structures and effective utilization of Human resources in the **CO3** organization. **CO4** Able to identify Importance of leadership and motivation to reach the organizational goals **CO5** Able to **Define** controlling and enlist its features, process and different controlling techniques

Course Name: NCPG

Course Code: EE511OE

CO1	Able to explain renewable energy sources and systems.
CO2	Able to apply engineering techniques to build solar, wind, tidal,geothermal,biofuel,fuel cell,
	hydrogen and sterling engine.
CO3	Able to analyze and evaluate the implication of renewable energy, concepts in solving numerical
	problems pertaining to solar radiation geometry and wind energy systems.
CO4	Able to demonstrate self learning capability to design and establish renewable energy systems.
CO5	Able to conduct experiments to assess the performance of solar PV, solar thermal and biodiesel
	systems.

Course Code: CE502PC

Course Name: CT LAB Able to **understand** the properties of cement.

CO1

CO2	Able to understand the workability and other fresh concrete properties.

Able to **understand** the properties of hardened concrete. CO3

CO4 Able to **understand** the tests on the self compacting concrete.

CO5 Able to **Perform** the Non Destructive tests of concrete.

Course Name: GIS LAB

Course Code: CE506PC

CO1	Able to study the toposheets and cadastral maps.
CO2	Able to develop the GIS interface to field problems through geofencing
CO3	Able to explain the digitization and GIS Coordination.
CO4	Able to explain the usage of GIS software with a case example.

Course Name: HHM LAB

Course Code: CE507PC

CO1	Able to Analyze the performance of Pelton wheel, Francis turbine and Kaplan turbine by drawing	
	its performance curves.	
CO2	Able to Analyze the performance of centrifugal pump and reciprocating pump by drawing its	
	performance curves.	
CO3	Able to Study of the flow in open channel and find the discharge using various weirs.	
CO4	Able to Understand the evaluation of the impact of jet on vanes.	

Course Code: CE505PC

YEAR: III

SEMESTER: II

REGULATION: R16

Course Name: DSS

CO1	Able to Design the bolted, welded connections and tension members
CO2	Able to Design the compression members for column splice and column base
CO3	Able to Extend the knowledge of plastic moment of beams and design them
CO4	Able to Design the eccentric connections for unstiffened and stiffened seated connections
CO5	Able to Interpret the knowledge of beams on welded plate girder and connections between flange
	and splice.

Course Name: EE

Course Name: EECourse Code: CE602		Course Code: CE602PC
CO1	Able to Acquire the knowledge of the water borne diseases	
CO2	Able to Acquire the knowledge of sources of water	
CO3	Able to Develop skills in designing the water treatment plant	
CO4	Able to Develop skills in control of Air pollution	
CO5	Able to Develop an understanding of sources of water and water supply.	

Course Name: Soil Mechanics

Course	Course Name: Soil Mechanics Course Code: CE603PC	
CO1	Able to Interpret the basic and index properties of the soils.	
CO2	Able to Explain the properties and factors affecting permeability and demonstrate the properties of flow	
	nets and its uses	
CO3	Able to Understand the concept of compaction and stress distribution in soils.	
CO4	Able to explain the concepts of consolidation & analyze the Terzaghi's one dimensional consolidation	
	theory.	
CO5	Able to understand the concept and Determine the shear strength of soil.	

Course Name: ERDSS

Course Code: CE614PC

CO1	Able to Describe the behavior of natural and engineered soil slopes under various weather and
	engineering conditions.
CO2	Able to Explain the factors that may affect the stability of slopes
CO3	Able to Select an appropriate slope stability analysis method subject to geometry of slope, material
	properties, and uncertainty of observations
CO4	Able to Assess the potential landslide risk of slopes.
CO5	Able to Design earth and rock fill dams, get familiarity with slope stability Calculations and
	prevention techniques for slope failures.

Course Name: Fabrication Process

Course	Name: Fabrication Process	Course Code: ME623OE
CO1	Able to understand casting process and interpret foundry practices and	inspection of defects.
CO2	Able to select appropriate joining process to join work piece.	
CO3	Able to differentiate various metals forming process.	
CO4	Able to classify different plastic deformation of extrusion of metals	
CO5	Able to understand the different forging operations, principles, tools and	l forging methods

Course Code: CE601PC

Course Name: SM LAB

	CO1	Able to Perform Atterberg limits test and sieve analysis for quality control
--	-----	---

CO2 Able to **Analyze** the behavior of soil by CBR test and tri-axial test

CO3 Able to **Interpret** Direct shear test , Vane shear strength parameters and unconfined compression

CO4 Able to **Conduct** Constant head and variable head test for permeability.

CO5 Able to **Conduct** One Dimensional consolidation Test and compaction Test

Course Name: CAD -II LAB

Course Code: CE605PC

Course Code: CE604PC

CO1	Sketch the reinforcement in different types of beams
CO2	Sketch the reinforcement in Columns & footings
CO3	Sketch the reinforcement in different types of Slabs
CO4	Sketch the bolted and welded connections of steel
CO5	Sketch different steel members

Course Name: AECS LAB

Course Code: EN606HS

CO1	Able to Acquire vocabulary and use it contextually
CO2	Able to Use Listening and speaking skills effectively
CO3	Able to Develop proficiency in academic reading and writing
CO4	Able to Increase possibilities of Job prospects
CO5	Able to Communicate confidently in formal and informal contexts.

YEAR: IV

Course Nome, Transportation Engineering

SEMESTER: I

Course Coder CE701DC

REGULATION: R16

Name: Transportation Engineering Course Code: CE/01PC
Able to Explain about Highway development and planning and evaluate the highway cross section
elements
Able to Construct the different types of Curves, Gradients, Super elevation and extra widening for
highways.
Able to Understand the Traffic Parameters, Traffic signs, Road markings and Traffic signal
phasing timings
Able to Define Intersections and choose the intersections for controlling of traffic in pavements
Able to Explain about Highway materials and maintenance for the construction of Highways

Course Name: EQSV

Course Code: CE702PC

CO1	Able to estimate the quantities of buildings using the two standard methods and calculate the cost.
CO2	Able to estimate the quantities for roads and earth works
CO3	Able to determine the different kinds of analysis of rates.
CO4	Able to develop Bar Bending Schedule for different kinds of bars.
CO5	Able to evaluate the buildings which are helpful for the Revenue Department

Course Name: FE

Able to Analyze the need and methods of soil exploration and to learn the field test and soil **CO1** investigation Able to Apply knowledge for stability of slopes of earth dams under different conditions **CO2 CO3** Able to interpret the earth pressure theories and design of retaining walls **CO4** Able to explain the theory of shallow foundation and to understanding the concept of pile foundation Able to **Describe** the properties of pile and well foundation and their functions **CO5**

Course Name: CIT

Course	Course Name: GIT Course Code: CE733PE	
CO1	Able to understand the basic concepts of Ground Improvement Techniques	
CO2	Able to explain the concept of mechanical and hydraulic modifications	
CO3	Able to explain the concept of physical and chemical modifications	
CO4	Able to explain the concept of modification by inclusions and confinement.	
CO5	Able to identify the suitable ground improvement techniques for specific project and its	
	implications.	

Course Name: Traffic Engineering

Able to **Understand** the basic principles of Traffic engineering **CO1 CO2** Able to **analyze** parking data and model accidents. Able to **explain** the Capacity and LOS. **CO3 CO4** Able to **design** signals considering various parameters. **CO5** Able to explain the transportation system management

Course Code: CE723PE

Course Code: CE714PE

Course Name: TE LAB

Course Code: CE703PC

CO1	Able to determine the properties of Aggregate by applying loads gradually and suddenly.	
	Aggregate Impact test, Aggregate Crushing test and Abrasion test	
CO2	Able to Demonstrate Shape tests and find Elongation and flakiness index	
CO3	Able to Illustrate Penetration, Ductility, Softening, flash and fire point tests.	
CO4	Able to determine strength of bitumen by means of Marshall stability test.	
CO5	Able to conduct the traffic volume counting and speed of vehicles by means of modern	
	equipment.	

Course Name: EE LAB

Course Code: CE704PC

CO1	Able to Quantify the water and wastewater pollutant.
CO2	Able to Measure the concentration of air pollutants
CO3	Able to Analyze the characteristics of water
CO4	Able to Analyze the characteristics of wastewater
CO5	Able to Study the growth of microorganism and its quantification

Course Name: MINI PROJECT

Course	Name: MINI PROJECT	Course Code: CE705PC
CO1	Able to Apply the basic principles in Civil Engineering to fulfill the requ	irements.
CO2	Able to Explain technical ideas, strategies and methodologies in an optimum manner	
CO3	Able to Demonstrate the outputs in an efficient manner.	

Course Name: SEMINAR

Course Code: CE706PC

CO1	Identify the relevant topics related to Civil Engineering Subjects.
CO2	Evaluate the topics in a planned manner.
CO3	Defend the presentations with a suitable answers.

YEAR: IV

SEMESTER: II

Course Code: FF833OF

REGULATION: R16

Course	Name: Organizational BehaviorCourse Code: EE833OE
CO1	Able to understand the concept of organizational behavior.
CO2	Able to analyze the Job satisfaction levels and motivational theories.
CO3	Able to evaluate the decision making techniques on organizational behavior
CO4	Able to analyze the importance of group versus teams
CO5	Able to examine the level of performances in Organizational behavior.

Course Name: Pavement Design

CO1	Able to Characterize the response characteristics of soil, aggregate, asphalt, and asphalt mixes
CO2	Able to Analyze flexible pavements
CO3	Able to Analyze rigid pavements
CO4	Able to Design a flexible pavement using IRC, Asphalt Institute, and AASHTO methods
CO5	Able to Design a rigid pavement using IRC and AASHTO methods

Course Name: IWWT

Course Code: CE864PE

Course Code: CE852PE

CO1	Able to identify the characteristics of industrial waste water.
CO2	Able to describe pollution effects of disposal of industrial effluent.
CO3	Able to identify and design the treatment options for industrial waste water.
CO4	Able to formulate environmental management plan.
CO5	Able to understand the characteristics and composition of industries.

Course Name: MAJOR PROJECT

Course	Name: MAJOR PROJECT	Course Code: CE801PC
CO1	Able to Apply the basic principles in Civil Engineering to fulfill the requ	uirements.
CO2	Able to Explain technical ideas, strategies and methodologies in an optim	mum manner
CO3	Able to Demonstrate the outputs in an efficient manner.	